Professor Information

Seunghee Hong

professor-image symbol

E-Mail: seungheehong@yonsei.ac.kr


C.V

Publications


2021 - Cell
Erythroid mitochondrial retention triggers myeloid-dependent type I interferon in human SLE
Abstract

Emerging evidence supports that mitochondrial dysfunction contributes to systemic lupus erythematosus (SLE) pathogenesis. Here we show that programmed mitochondrial removal, a hallmark of mammalian erythropoiesis, is defective in SLE. Specifically, we demonstrate that during human erythroid cell maturation, a hypoxia-inducible factor (HIF)-mediated metabolic switch is responsible for the activation of the ubiquitin-proteasome system (UPS), which precedes and is necessary for the autophagic removal of mitochondria. A defect in this pathway leads to accumulation of red blood cells (RBCs) carrying mitochondria (Mito+ RBCs) in SLE patients and in correlation with disease activity. Antibody-mediated internalization of Mito+ RBCs induces type I interferon (IFN) production through activation of cGAS in macrophages. Accordingly, SLE patients carrying both Mito+ RBCs and opsonizing antibodies display the highest levels of blood IFN-stimulated gene (ISG) signatures, a distinctive feature of SLE


2020 - Nature Immunology
Mapping systemic lupus erythematosus heterogeneity at the single-cell level
Abstract

Patients with systemic lupus erythematosus (SLE) display a complex blood transcriptome whose cellular origin is poorly resolved. Using single-cell RNA sequencing, we profiled ~276,000 peripheral blood mononuclear cells from 33 children with SLE with different degrees of disease activity and 11 matched controls. Increased expression of interferon-stimulated genes (ISGs) distinguished cells from children with SLE from healthy control cells. The high ISG expression signature (ISGhi) derived from a small number of transcriptionally defined subpopulations within major cell types, including monocytes, CD4+ and CD8+ T cells, natural killer cells, conventional and plasmacytoid dendritic cells, B cells and especially plasma cells. Expansion of unique subpopulations enriched in ISGs and/or in monogenic lupus-associated genes classified patients with the highest disease activity. Profiling of ~82,000 single peripheral blood mononuclear cells from adults with SLE confirmed the expansion of similar subpopulations in patients with the highest disease activity. This study lays the groundwork for resolving the origin of the SLE transcriptional signatures and the disease heterogeneity towards precision medicine applications.


2019 - Journal of Experimental Medicine
Longitudinal profiling of human blood transcriptome in healthy and lupus pregnancy
Abstract

Systemic lupus erythematosus carries an increased risk of pregnancy complications, including preeclampsia and fetal adverse outcomes. To identify the underlying molecular mechanisms, we longitudinally profiled the blood transcriptome of 92 lupus patients and 43 healthy women during pregnancy and postpartum and performed multicolor flow cytometry in a subset of them. We also profiled 25 healthy women undergoing assisted reproductive technology to monitor transcriptional changes around embryo implantation. Sustained down-regulation of multiple immune signatures, including interferon and plasma cells, was observed during healthy pregnancy. These changes appeared early after embryo implantation and were mirrored in uncomplicated lupus pregnancies. Patients with preeclampsia displayed early up-regulation of neutrophil signatures that correlated with expansion of immature neutrophils. Lupus pregnancies with fetal complications carried the highest interferon and plasma cell signatures as well as activated CD4+ T cell counts. Thus, blood immunomonitoring reveals that both healthy and uncomplicated lupus pregnancies exhibit early and sustained transcriptional modulation of lupus-related signatures, and a lack thereof associates with adverse outcomes.


2016 - Cell
Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients
Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by loss of tolerance to nucleic acids and highly diverse clinical manifestations. To assess its molecular heterogeneity, we longitudinally profiled the blood transcriptome of 158 pediatric patients. Using mixed models accounting for repeated measurements, demographics, treatment, disease activity (DA), and nephritis class, we confirmed a prevalent IFN signature and identified a plasmablast signature as the most robust biomarker of DA. We detected gradual enrichment of neutrophil transcripts during progression to active nephritis and distinct signatures in response to treatment in different nephritis subclasses. Importantly, personalized immunomonitoring uncovered individual correlates of disease activity that enabled patient stratification into seven groups, supported by patient genotypes. Our study uncovers the molecular heterogeneity of SLE and provides an explanation for the failure of clinical trials. This approach may improve trial design and implementation of tailored therapies in genetically and clinically complex autoimmune diseases


2016 - Journal of Immunology
Transcriptional repression of IRF7 by MYC is critical for type I interferon production in human pDC
Abstract

Type I interferons (IFN) are crucial mediators of human innate and adaptive immunity and are massively produced from plasmacytoid dendritic cells (pDC). IRF7 is a critical regulator of type I IFN production when pathogens are detected by Toll-like receptor (TLR) 7/9 in pDC. However, hyperactivation of pDC can cause life-threatening autoimmune diseases. To avoid the deleterious effects of aberrant pDC activation, tight regulation of IRF7 is required. Nonetheless, the detailed mechanisms of how IRF7 transcription is regulated in pDC are still elusive. MYC is a well-known highly pleiotropic transcription factor however the role of MYC in pDC function is not well defined yet. To identify the role of transcription factor MYC in human pDC, we employed a knockdown technique using human pDC cell line, GEN2.2. When we knocked down MYC in the pDC cell line, production of IFN-stimulated genes was dramatically increased and was further enhanced by the TLR9 agonist CpGB. Interestingly, MYC is shown to be recruited to the IRF7 promoter region through interaction with NCOR2/HDAC3 for its repression. In addition, activation of TLR9-mediated NF-kB and MAPK and nuclear translocation of IRF7 were greatly enhanced by MYC depletion. Pharmaceutical inhibition of MYC recovered IRF7 expression, further confirming the negative role of MYC in the antiviral response by pDC. Therefore, our results identify the novel immunomodulatory role of MYC in human pDC and may add to our understanding of aberrant pDC function in cancer and autoimmune disease.